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ABSTRACT

The forms of electron density structures in kinetic Alfvén wave (KAW) turbulence are studied in connection with
scintillation. The focus is on small scales L ∼ 108–1010 cm where the KAW regime is active in the interstellar
medium, principally within turbulent H ii regions. Scales at 10 times the ion gyroradius and smaller are inferred
to dominate scintillation in the theory of Boldyrev et al. From numerical solutions of a decaying KAW turbulence
model, structure morphology reveals two types of localized structures, filaments and sheets, and shows that they
arise in different regimes of resistive and diffusive damping. Minimal resistive damping yields localized current
filaments that form out of Gaussian-distributed initial conditions. When resistive damping is large relative to
diffusive damping, sheet-like structures form. In the filamentary regime, each filament is associated with a non-
localized magnetic and density structure, circularly symmetric in cross section. Density and magnetic fields have
Gaussian statistics (as inferred from Gaussian-valued kurtosis) while density gradients are strongly non-Gaussian,
more so than current. This enhancement of non-Gaussian statistics in a derivative field is expected since gradient
operations enhance small-scale fluctuations. The enhancement of density gradient kurtosis over current kurtosis is
not obvious, yet it suggests that modest density fluctuations may yield large scintillation events during pulsar signal
propagation. In the sheet regime the same statistical observations hold, despite the absence of localized filamentary
structures. Probability density functions are constructed from statistical ensembles in both regimes, showing clear
formation of long, highly non-Gaussian tails.
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1. INTRODUCTION

Models of scintillation have a long history. Many (Lee
& Jokipii 1975a, 1975b; Sutton 1971) carry an implicit or
explicit assumption of Gaussian statistics, applying to either
the electron density field itself or its autocorrelation function
(herein referred to as “Gaussian models”). Lee & Jokipii (1975a)
is a representative approach. The statistics of the two-point
correlation function of the index of refraction ε(r), A(ρ) =∫

dz′〈ε(x, z)ε(x + ρ, z′)〉 determines, among other effects, the
scaling of pulsar signal width τ with dispersion measure
DM. The index of refraction ε(r) is a function of electron
density fluctuation n(r). The quantity A(0) enters the equations,
representing the second moment of the index of refraction. If
the distribution function of ε(r) has no second-order moment
(as in a Lévy distribution) A(0) is undefined. The assumption
of Gaussian statistics leads to a scaling of τ ∼ DM2, which
contradicts observations for pulsars with DM > 30 cm−3 pc.
For these distant pulsars, τ ∼ DM4 (Sutton 1971; Boldyrev &
Gwinn 2003a, 2003b).

To explain the anomalous DM4 scaling, Sutton (1971) argued
that the pulsar signal encounters strongly scattering turbulent
regions for longer lines of sight, essentially arguing that the
statistics, as sampled by a pulsar signal, are nonstationary. Con-
sidering the pulse shape in time, Williamson (1972, 1973, 1974)
is unable to match observations with a Gaussian model of scintil-
lation unless the scattering region is confined to 1/4 of the line of
sight between the pulsar and Earth. These assumptions may have
a physical basis, since the interstellar medium (ISM) may not
be statistically stationary, being composed of different regions
with varying turbulence intensity (Boldyrev & Gwinn 2005).

The theory of Boldyrev & Gwinn (2003a, 2003b, 2005)
and Boldyrev & Konigl (2006) takes a different approach to
explaining the anomalous DM4 scaling by considering Lévy
statistics for the density difference (defined below). Lévy
distributions are characterized by long tails with no defined
moments greater than first order (i.e., A(0) is undefined for a
Lévy distribution). The theory recovers the τ ∼ DM4 relation
with a statistically stationary electron density field. This theory
also does not constrain the scattering region to a fraction of the
line-of-sight distance.

The determinant quantity in the theory of Boldyrev et al. is
the density difference, Δn = n(x1, z) − n(x2, z). According to
this model, if the distribution function of Δn has a power-law
decay as |Δn| → ∞ and has no second moment, then it is
possible to recover the τ ∼ DM4 scaling (Boldyrev & Gwinn
2003b). Assuming sufficiently smooth fluctuations, Δn can be
expressed in terms of the density gradient, σ (z): n(x1)−n(x2) 	
σ (z) · (x1−x2). Perhaps more directly, the density gradient enters
the ray-tracing equations (Equations (7) in Boldyrev & Gwinn
2003a) and is seen to be central to determining the resultant
pulsar signal shape and width. This formulation of a scintillation
theory does not require the distribution of Δn to be Gaussian or
to have a second-order moment.

The notion that the density difference is characterized by
a Lévy distribution is a constraint on dynamical models for
electron density fluctuations in the ISM. Consequently, the
question of how a Lévy distribution can arise in electron density
fluctuations assumes considerable importance in understanding
the ISM.

Previous work has laid the groundwork for answering
this question. It has been established that electron density

1

http://dx.doi.org/10.1088/0004-637X/730/2/133
mailto:kwsmith1@wisc.edu


The Astrophysical Journal, 730:133 (13pp), 2011 April 1 Smith & Terry

fluctuations associated with interstellar magnetic turbulence un-
dergo a significant change in character near the scale 10ρs ,
where ρs is the ion sound gyroradius (Terry et al. 2001). At
larger scales, electron density is passively advected by the tur-
bulent flow of an MHD cascade mediated by nonlinear shear
Alfvén waves (Goldreich & Sridhar 1995). At smaller scales,
the electron density becomes compressive and the turbulent en-
ergy is carried into a cascade mediated by kinetic Alfvén waves
(KAWs) (Terry et al. 2001). The KAW cascade brings electron
density into equipartition with the magnetic field, allowing for a
significant increase in amplitude. The conversion to a KAW cas-
cade has been observed in numerical solutions of the gyrokinetic
equations (Howes et al. 2006) and is consistent with observa-
tions from solar wind turbulence (Harmon & Coles 2005; Bale
et al. 2005; Leamon et al. 1998). Importantly, it puts large-
amplitude electron density fluctuations (and large-amplitude
density gradients) at the gyroradius scale (∼108–1010 cm), a
desirable set of conditions for pulsar scintillation (Boldyrev &
Konigl 2006). It is therefore appropriate to consider whether
large-amplitude non-Gaussian structures can arise in KAW
turbulence.

This question has been partially answered in a study of cur-
rent filament formation in decaying KAW turbulence (Terry &
Smith 2007, 2008). In numerical solutions to a two-field model
with broadband Gaussian initial conditions large-amplitude cur-
rent filaments spontaneously arose. Each filament was associ-
ated with a large-amplitude electron density structure, circular
in cross-section, that persisted in time. These electron density
structures were not as localized as the corresponding current
filaments, but were coherent and not mixed by surrounding tur-
bulence. The observation of large-amplitude current filaments is
similar to the large-amplitude vortex filaments found in decaying
two-dimensional hydrodynamic turbulence (McWilliams 1984).
Counterparts of such structures in three dimensions are pre-
dicted to be the dominant component for higher-order structure
functions (She & Leveque 1994).

Terry & Smith (2007) proposed that a nonlinear refractive
magnetic shear mechanism prevents the structures from mix-
ing with turbulence. Radial shear in the azimuthally directed
magnetic field associated with each large-amplitude current fil-
ament decreases the radial correlation length of the turbulent
eddies and enhances the decorrelation rate. Eddies are unable to
persist long enough to penetrate the shear boundary layer and
disrupt the structure core. The structure persistence mechanism
allows large-amplitude fluctuations to persist for many eddy-
turnover times. As the turbulent decays these structures eventu-
ally dominate the statistics of the system. The spatial structure
of the density field associated with localized circularly symmet-
ric current filaments was shown from analytical theory (Terry &
Smith 2007) to yield a Lévy-distributed density gradient field.
The kurtosis for the current field was significantly larger than
the Gaussian-valued kurtosis of 3, indicating enhanced tails.
The electron density and magnetic field kurtosis values were
not significantly greater than 3. However, just as the current is
non-Gaussian when the magnetic field is not, it is expected that
numerical solutions should show non-Gaussian behavior for the
density gradient. In the present paper, density gradient statistics
are measured and found to be non-Gaussian. Rather than rely-
ing on kurtosis values alone, the probability density functions
(PDFs) are computed from ensembles of numerical solutions,
showing non-Gaussian PDFs for the density gradient field.

The previous studies of filament generation in KAW tur-
bulence leave significant unanswered questions relating to

structure morphology and its effect on scintillation. It is well
established that MHD turbulence admits structures that are both
filament-like and sheet-like. Can sheet-like structures arise in
KAW turbulence? If so, what are the conditions or parame-
ters favoring one type of structure versus the other? If sheet-
like structures dominate in some circumstances, what are the
statistics of the density gradient? Can they be sufficiently non-
Gaussian to be compatible with pulsar scintillation scaling? It
is desirable to consider such questions prior to calculation of
radio-frequency wave scattering properties in the density gradi-
ent fields obtained from numerical solutions.

In this paper, we show that both current filaments and
current-sheet structures naturally arise in numerical solutions
of a decaying KAW turbulence model. Each has a structure
of the same type and at the same location in the electron
density gradient. These structures become prevalent as the
numerical solutions progress in time, and each is associated
with highly non-Gaussian PDFs. Moreover, we show that
small-scale current filaments and current sheets, along with
their associated density structures, are highly sensitive to the
magnitude of resistive damping and diffusive damping of
density fluctuations. Current filaments persist provided that
resistivity η is small; similarly, electron density fluctuations
and gradients are diminished by large diffusive damping in the
electron continuity equation. The latter results from collisions
assuming density fluctuations are subject to Fick’s law for
diffusion. The magnitude of the resistivity affects (1) whether
current filaments can become large in amplitude, (2) their spatial
scale, and (3) the preponderance of these filaments as compared
to sheets. The magnitude of the diffusive damping parameter, μ,
similarly influences the amplitude of density gradients and, to
a lesser degree, influences the extent to which electron density
structures are non-localized.

In the ISM resistive and diffusive damping become important
near resistive scales. However, it is well known that collisionless
damping effects are also present (Lysak & Lotko 1996; Bale et al.
2005), and quite possibly dominate over collisional damping in
larger scales near the ion Larmor radius. The collisional damping
in the present work is understood as a heuristic approach that
facilitates analysis of the effects of different damping regimes
on the statistics of electron density fluctuations. By varying the
ratio of resistive and diffusive damping we can, as suggested
above, control the type of structure present in the turbulence.
This allows us to isolate and study the statistics associated with
each type of structure. It also allows us to assess and examine
the type of environment conducive to formation of the structure.
We consider regimes with large and small damping parameters,
enabling us to explore damping effects on structure formation
across a range from inertial to dissipative. Future work will
address collisionless damping in greater detail.

1.1. Background Considerations for Structure Formation

The coherent structures observed in numerical solutions of
decaying KAW turbulence, whether elongated sheets or local-
ized filaments, are similar to structures observed in decaying
MHD turbulence, as in Kinney & McWilliams (1995). In that
work, the flow field initially gives rise to sheet-like structures.
After selective decay of the velocity field energy, the system
evolves into a state with sheets and filaments. During the merger
of like-signed filaments, large-amplitude sheets arise, limited to
the region between the merging filaments. These short-lived
sheets exist in addition to the long-lived sheets not associated
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with the merger of filaments. In the two-field KAW system,
however, there is no flow; the sheet and filament generation is
due to a different mechanism, of which the filament generation
has previously been discussed (Terry & Smith 2007).

Other work (Biskamp & Welter 1989; Politano et al. 1989)
observed the spontaneous generation of current sheets and fila-
ments in numerical solutions, with both Orszag–Tang vortex and
randomized initial conditions. These two-dimensional reduced
MHD numerical solutions modeled the evolution of magnetic
flux and vorticity with collisional dissipation coefficients η, the
resistivity, and ν, the kinematic viscosity. The magnetic Prandtl
number, ν/η, was set to unity. These systems are incompress-
ible and not suitable for modeling the KAW system we con-
sider here—they do however illustrate the ubiquity of current
sheets and filaments, and serve as points of comparison. For
Orszag–Tang-like initial conditions with large-scale flux tubes
smooth in profile, current sheets are preferred at the interfaces
between tubes. Tearing instabilities can give rise to filamentary
current structures that persist for long times, but the large scale
and smoothness of flux tubes do not give rise to strong cur-
rent filaments localized at the center of the tubes. To see this,
consider a given flux tube, and model it as cylindrically symmet-
ric and monotonically decreasing in r with characteristic radial
extent a,

ψ(r) = ψ0

(
1 −

( r

a

)2
)

, (1)

for 0 � r � a. The current is localized at the center with
magnitude

J = −4
ψ0

a2
. (2)

Thus, flux tubes with large radial extent a have a corresponding
small current filament at their center. Hence, initial conditions
dominated by a few large-scale flux tubes are not expected to
have large-amplitude current filaments at the flux-tube centers,
but favor current-sheet formation and filaments associated with
tearing instabilities in those sheet regions. At X points current-
sheet folding and filamentary structures can arise (see, e.g.,
Biskamp & Welter 1989, Figure 10), but these regions are
small in area compared to the quiescent flux-tube regions. Note
that if, instead of Orszag-Tang-like initial conditions, the initial
state is random, one expects some regions with flux tubes that
have small a, and therefore a sizable current filament at the
center.

Consider now the effect of comparatively large or small η. In
the case of large η, the central region of a flux tube is smoothed
by the collisional damping, thus having a strong suppressive
effect on the amplitude of the current filament associated
with such a flux tube. Large-amplitude current structures are
localized to the interfaces between flux tubes. In the process of
mergers between like-signed filaments (and repulsion between
unlike-signed), large current sheets are generated at these
interfaces, similar to the large-amplitude sheets generated in
MHD turbulence during mergers (Kinney & McWilliams 1995).
For small η, relatively little suppression of isolated current
filaments should occur; if these filaments are spatially separated
owning to the buffer provided by their associated flux tube, they
can be expected to survive a long time and only be disrupted
upon the merger with another large-scale flux tube. Large η,
then, allows current sheets to form at the boundaries between
flux tubes while suppressing the spatially separated current
filaments at flux-tube centers. Small η allows interface sheets
and spatially separated filaments to exist.

These simple arguments suggest that the evolution of the
large-amplitude structures and their interaction with turbulence
is thus strongly influenced by the damping parameters. As such,
the magnitudes of the damping parameters are expected to affect
the resultant pulsar scintillation scalings. The present paper
considers the effect of variations of these damping parameters, η
and μ. In the KAW model, the (unnormalized) resistivity takes
the form η = meνe/ne2 and the density diffusion coefficient
is μ = ρ2

e νe, where me is the electron mass, νe is the electron
collision frequency, n is the electron density, e is the electron
charge, and ρe = vT e/ωce, with vT e the electron thermal
velocity and ωce the electron gyrofrequency. The ratio of these
terms, c2η/4πμ = 2/β, where β = 8πnkT /B2 is the ratio of
plasma to magnetic pressures. When we vary this ratio, as we
will do in the numerical solutions presented here, we have in
mind that we are representing regions of different β. However,
as a practical matter in the numerical solutions, we must vary the
damping parameters independently of the variation of β, since
the KAW dynamics require a small β to propagate. For the
warm ionized medium, typical parameters are Te = 8000 K,
n = 0.08 cm−3, |B| = 1.4 μG, δB = 5.0 μG (Ferrière
2001). With these parameters, the plasma β formally ranges
from 0.05 to 1.2, spanning a range of plasma magnetization.

We present the results of numerical solutions of decaying
KAW turbulence to ascertain the effect of different damping
regimes on the statistics of the fields of interest, in particular
the electron density and electron density gradient. In the
η 
 μ regime (using normalized parameters), previous work
(Craddock et al. 1991) had large-amplitude current filaments
that were strongly localized with no discernible electron density
structures (μ was large to preserve numerical stability). This
regime is unable to preserve density structures or density
gradients. The numerical solutions presented here have η ∼ μ
and η � μ; in each limit the damping parameters are minimized
so as to allow structure formation to occur and are large enough
to ensure numerical stability for the duration of each numerical
solution. We investigate the statistics of both filaments and
sheets in the context of scintillation in the warm ionized medium.

The paper is arranged as follows. Section 2 gives an overview
of the KAW model and normalizations, its regime of validity,
and its dispersion relation. Section 3 discusses the numerical
method used and the field initializations. The negligible effect
of initial cross-correlation between fields is discussed. Results
for the two damping regimes are given in Section 4, where
the type of structures that form, whether sheets-and-filaments
or predominantly sheets, are seen to be dependent on the val-
ues of η and μ. PDFs from ensemble numerical solutions are
presented in Section 5, illustrating the strongly non-Gaussian
statistics in the electron density gradient field for both the η ∼ μ
and η � μ regimes. This suggests that non-Gaussian electron-
density gradients are robust to variation in η, as long as the over-
all damping in the continuity equation is not too large. Some dis-
cussions regarding the limitations of numerical approximation
for this work and possible enhancements—particularly a model
that addresses driven KAW turbulence—are given in concluding
remarks.

2. KINETIC ALFVÉN WAVE MODEL

The KAW model used in this paper is the same model used
in theories of pulsar scintillation through the ISM (Terry &
Smith 2007, 2008) and in earlier work (Craddock et al. 1991).
It is a reduced, two-field, small-scale limit of a more general
reduced three-field MHD system (Hazeltine 1993; Rahman
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& Wieland 1983; Fernandez & Terry 1997) that accounts for
electron dynamics parallel to the magnetic field.

The three-field model applies to large- and small-scale fluc-
tuations as compared to ρs , the ion gyroradius evaluated at
the electron temperature. In large-scale strong turbulence mag-
netic and kinetic fluctuations are in equipartition, with electron
density passively advected. In the limit of small spatial scales
(�10ρs) the roles of kinetic and internal fluctuations are re-
versed—magnetic fluctuations are in equipartition with density
fluctuations, and kinetic energy experiences a go-it-alone cas-
cade without participating in the magnetic–internal energy in-
teraction. The shear-Alfvén physics at large scale is supplanted
by kinetic Alfvén physics at small scale (Terry et al. 2001).

In the Boldyrev et al. theory, the length scales that dominate
scintillation for pulsars with DM > 30 pc cm−3 are small,
around 108–1010 cm. This motivates our focus on the small-
scale regime of the more general three-field system. The domi-
nant interactions are between magnetic and internal fluctuations,
via KAWs. In these waves, electron density gradients along the
magnetic field act on an inductive electric field in Ohm’s law.
The electron continuity equation serves to close the system. The
normalized equations are

∂tψ = ∇‖n + η0J − η2∇2J, (3)

∂tn = −∇‖J + μ0∇2n − μ2∇2∇2n, (4)

∇‖ = ∂z + ∇ψ × z · ∇, (5)

J = ∇2ψ, (6)

with ψ = (Cs/c)eAz/Te the normalized parallel compo-
nent of the vector potential and n = (Cs/VA)ñ/n0 the nor-
malized electron density. The normalized resistivity is η0 =
(c2/4πVAρs)ηsp, with ηsp the Spitzer resistivity, given in the
introduction. The normalized diffusivity is μ = ρ2

e νe/ρsVA.
The time and space normalizations are τA = ρs/VA and
ρs = Cs/Ωi . Here, Cs = (Te/mi)1/2 is the ion acoustic velocity,
VA = B/(4πmin0)1/2 is the Alfvén speed, and Ωi = eB/mic is
the ion gyrofrequency. Electron density diffusion is presumed
to follow Fick’s law; more detailed damping would necessarily
consider kinetic effects and cyclotron resonances. The η2 and
μ2 terms (hyper-resistivity and hyper-diffusivity) are introduced
to mitigate large-scale Fourier-mode damping by the linear dif-
fusive terms. Throughout the remainder of the paper, we drop
the subscript 2 from η2 and μ2 and refer to the hyper-dissipative
terms as η and μ.

Three ideal invariants exist: total energy E = ∫
d2x[(∇ψ)2 +

αn2], flux F = ∫
d2x ψ2, and cross-correlation Hc =∫

d2x nψ . Energy cascades to small scale (large k) while the
flux and cross-correlation undergo an inverse cascade to large
scale (small k) (Fernandez & Terry 1997). The inverse cascades
require the initialized spectrum to peak at k0 �= 0 to allow for
buildup of magnetic flux at large scales for later times.

Linearizing the system yields a (dimensional) dispersion
relation ω = VAkzk⊥ρs . The mode combines perpendicular
oscillation associated with a finite gyroradius with fluctuations
along a mean field (z-direction). The oscillating quantities are
magnetic field and density, out of phase by π/2 radians.

In the limit of strong mean field, quantities along the mean
field (z-direction) equilibrate quickly, which allows ∂/∂z → 0
or kz → 0. KAWs still propagate, as long as there is a

broad range of scales that are excited, as in fully developed
turbulence. As kz → 0, all gradients are localized to the
plane perpendicular to the mean field. Presuming a large-
scale fluctuation at characteristic wavenumber k0, smaller-scale
fluctuations propagate linearly along this larger-scale fluctuation
so long as their characteristic scale k satisfies k � k0. In this
reduced, two-dimensional system, the above dispersion relation
is modified to be ω = VA(bk0 ·k/B)kρs which is still Alfvénic but
with respect to a perturbed large-scale amplitude perpendicular
to the mean field. Relaxing the scale separation criterion yields
ω ∝ k2 for the general case.

3. NUMERICAL SOLUTION METHOD

We evolve Equations (3) and (4) in a two-dimensional
periodic box, size [2π ] × [2π ] on a mesh of resolution 512 ×
512. The ψ and n scalar fields are evolved in the Fourier
domain, with the nonlinearities advanced pseudospectrally and
with full 2/3 dealiasing in each dimension (Orszag 1971). The
diffusive and resistive terms normally introduce stiffness into
the equations; using an integrating factor removes any stability
constraints stemming from these terms. Following the scheme
outlined in Canuto et al. (1990), we start with the semi-discrete
formulation of Equations (3) and (4):

dψk

dt
= −ηk4ψk + F[∇‖n] (7)

dnk

dt
= −μk4nk − F[∇‖J ], (8)

where F[·] denotes the discrete Fourier transform. We do not
explicitly expand the nonlinear terms as they will be integrated
separately. The hyper-damping terms (proportional to k4) are
included above. Damping terms corresponding to the Laplacian
operator (proportional to k2) are not included in this section for
clarity, but are trivial to incorporate. Equations (7) and (8) can
be put in the form

d

dt

[
eηk4tψk

] = eηk4tF[∇‖n] (9)

d

dt

[
eμk4t nk

] = −eμk4tF[∇‖J ]. (10)

A second-order Runge–Kutta scheme for the ψk difference
equation is

ψ
m+1/2
k = e−ηk4Δt/2

[
ψm

k + Δt/2F[∇‖nm]
]

(11)

ψm+1
k = e−ηk4Δt

[
ψ

m+1/2
k + ΔtF[∇‖nm+1/2]

]
, (12)

with a similar form for the nk scheme.

3.1. Initial Conditions

The ψk and nk fields are initialized such that the energy spectra
are broad band with a peak near k0 ∼ 6–10 and a power-law
spectrum for k > k0. The falloff in k is predicted to be k−2 for
small-scale turbulence. Craddock et al. (1991) use k−3, between
the current-sheet limit of k−4 and the KAW strong-turbulence
limit of k−2. The numerical solutions considered here have either
k−2 or k−3. The only qualitative difference between the two
spectra is the scale at which structures initially form. The k−2
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spectra has more energy at smaller scales, leading to smaller
characteristic structure size. After a few tens of Alfvén times
these smaller-scale structures merge and the system resembles
the initial k−3 spectra.

The nk and ψk phases can be either cross-correlated or
uncorrelated. By cross-correlated we mean that the phase angle
for each Fourier component of the nk and ψk fields are equal. In
general,

nk = |Ak|eiθ1 , ψk = |Bk|eiθ2 , (13)

where |Ak| and |Bk| are the Fourier component’s amplitude, set
according to the spectrum power law. For cross-correlated initial
conditions, θ1 = θ2 for all k at the initial time. For uncorrelated
initialization, there is no phase relation between corresponding
Fourier components of the nk and ψk fields.

Craddock et al. (1991) focused on the formation and longevity
of current filaments in a turbulent KAW system. To preserve
small-scale structure in the current filaments, these numerical
solutions set η = 0 and had μ ∼ 10−3, with a resolution of
128 × 128, corresponding to a kmax of 44. Large-amplitude
density structures that would have arisen were damped to
preserve numerical stability up to an advective instability time
of a few hundred Alfvén times, for the parameter values
therein. The numerical solutions presented here explore a range
of parameter values for η and μ. They make use of hyper-
diffusivity and hyper-resistivity of appropriate strengths to
preserve structures in n, B, and J. An advective instability
is excited after ∼102 Alfvén times if resistive damping is
negligible. The η = 0 solutions—not presented here due to their
poor resolution of small-scale structures—see large-amplitude
current filaments arise, but they can be poorly resolved at this
grid spacing. With no resistivity, the finite number of Fourier
modes cannot resolve arbitrarily small structures without Gibbs
phenomena resulting and distorting the current field.

We have found through experience that small hyper-resistivity
and small hyper-diffusivity preserve large-amplitude density
structures and their spatial correlation with the magnetic and
current structures, while preventing the distortion resulting from
poorly resolved current sheets and filaments. They allow the
numerical solutions to run for arbitrarily long times, and the
effects of structure mergers become apparent. These occur on
a longer timescale than the slowest eddy-turnover times. The
results presented here will consider two regimes of parameter
values, the η ≈ μ and η � μ regimes. The effect of cross-
correlated and uncorrelated initial conditions will be addressed
presently.

4. RESULTS

It is of interest to examine whether cross-correlated or un-
correlated initial conditions affect the long-term behavior of
the system. Two representative numerical solutions are pre-
sented here that reveal the system’s tendency to form spa-
tially correlated structures in electron density and current re-
gardless of initial phase correlations. This study establishes the
robustness of density structure formation in KAW turbulence
and lends confidence that such structures should exist in the
ISM under varying circumstances. The first numerical solu-
tion has cross-correlated initial conditions between the n and ψ
fields; the second, uncorrelated. Damping parameters η and μ
are equal and large enough to ensure numerical stability while
preserving structures in density, current, and magnetic fields.
These examples also serve to explore the intermediate η/μ
regime.

Figure 1. Energy vs. time for cross-correlated initial conditions. Total energy is
monotonically decreasing with time, and magnetic and internal energies remain
in rough equipartition.

(A color version of this figure is available in the online journal.)

The energy versus time history for both numerical solutions
are given in Figures 1 and 2. Total energy is a monotonically
decreasing function of time. The magnetic and internal ener-
gies remain in overall equipartition throughout the numerical
solutions. Magnetic energy increases at the expense of internal
energy and vice versa. This energy interchange is consistent
with KAW dynamics and overall energy conservation in the ab-
sence of resistive or diffusive terms. The exchange is crucial in
routinely producing large-amplitude density fluctuations in this
two-field model of nonlinearly interacting KAWs.

The total energy decay rates for the uncorrelated and cor-
related initial conditions in Figures 1 and 2 differ, with the
latter decaying more strongly than the former. The damping
parameters are identical for the two numerical solutions, and
the decay-rate difference remains under varying randomization
seeds. The magnitudes of the nonlinear terms during the span of
a numerical solution in Equations (3) and (4) for uncorrelated
initial conditions are consistently larger than those of correlated
initial conditions by a factor of five. This difference lasts until
2500 Alfvén times, after which the decay rates are roughly equal
in magnitude. The steeper energy decay during the run of nu-
merical solutions with uncorrelated initial conditions (Figure 2)
suggests that the enhancement of the uncorrelated nonlineari-
ties transports energy to higher k (smaller scale) more readily
than the nonlinearities in the correlated case. Relatively more
energy at higher k enhances the energy decay rate as the lin-
ear damping terms dissipate more energy from the system. The
initial configuration, whether correlated or uncorrelated, is seen
to have an effect on the long-term energy evolution for these
decaying numerical solutions. It will be shown below, however,
that the correlation does not significantly affect the statistics of
the resulting fields.

For cross-correlated initial conditions, we expect there to
be a strong spatial relation between current, magnetic field,
and density structures through time. Figures 3 and 4 show
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Figure 2. Energy vs. time for uncorrelated initial conditions. Total energy is
monotonically decreasing with time, and magnetic and internal energies remain
in rough equipartition.

(A color version of this figure is available in the online journal.)

the n and |B| contours at various times. For the latest time
contour, the spatial structure alignment is evident. Further,
in Figure 5, the circular magnetic field structures (magnetic
field direction and intensity indicated by arrow overlays) align
with the large-amplitude density fluctuations. The correlation is
evident once one notices that every positive-valued circular n
structure corresponds to a counterclockwise-oriented magnetic
field, and vice versa. Figure 5 is at a normalized time of 5000
Alfvén times, defined in terms of the large B0. The system
preserves the spatial structure correlation indefinitely, even after
structure mergers.

The second representative numerical solution is one with
uncorrelated initial conditions. Contour plots of density and
|B| are given in Figures 6 and 7, respectively. It is noteworthy
that, similar to the cross-correlated initial conditions, spatially
correlated density and magnetic field structures are discernible
at the latest time contour.

In Figure 8 the circular density structures correspond to
circular magnetic structures. Unlike Figure 5 the positive density
structures may correspond to clockwise or counterclockwise
directed magnetic field structures. This serves to illustrate that,
although the initial conditions have no phase relation between
fields, after many Alfvén times circular density structures
spatially correlate with magnetic field structures and persist for
later times.

The kurtosis excess as a function of time, defined as K(Ξ) =
〈Ξ4〉/σ 4

Ξ − 3, is shown in Figures 9 and 10 for correlated and
uncorrelated initial conditions, respectively. Positive K indicates

Figure 3. Contours of n for various times in a numerical solution with correlated initial conditions.

(A color version of this figure is available in the online journal.)

Figure 4. Contours of |B| for various times in a numerical solution with correlated initial conditions.

(A color version of this figure is available in the online journal.)
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Figure 5. Contour plot of n with B vectors overlaid. The positive, circularly
symmetric density structures correspond to counterclockwise-directed B struc-
tures; the opposite holds for negative circularly symmetric density structures.
These spatial correlations are to be expected for correlated initial conditions.

(A color version of this figure is available in the online journal.)

a greater fraction of the distribution is in the tails as compared to
a best-fit Gaussian. These figures indicate that the non-Gaussian
statistics for the fields of interest are independent of initial
correlation in the fields. In particular, the density gradients,
|∇n|, are significantly non-Gaussian as compared to the current.
Because scintillation is tied to density gradients, this situation
is expected to favor the scaling inferred from pulsar signals.

The tendency of density structures to align with magnetic field
structures regardless of initial conditions indicates that the initial
conditions are representative of fully developed turbulence.
After a small number of Alfvén times the memory of the initial
state is removed as the KAW interaction sets up a consistent
phase relation between the fluctuations in the magnetic and
density fields. Previous work (Terry & Smith 2007) presented
a mechanism whereby these spatially correlated structures can
be preserved via shear in the periphery of the structures. The
above figures indicate that this mechanism is at play even in
cases where the initial phase relations are uncorrelated.

In the damping regime presented above, circularly symmetric
structures in density, current, and magnetic fields readily form
and persist for many Alfvén times, until disrupted by mergers
with other structures of similar amplitude. It is possible to de-
fine, for each circular structure, an effective separatrix that dis-
tinguishes it from surrounding turbulence and large-amplitude
“sheets” that exist between structures (see, e.g., the magnetic
field contours at later times in Figure 7). The density field
has significant gradients in both the regions surrounding the
structure and within the structures themselves. The ability to

Figure 6. Contours of n for various times in a numerical solution with uncorrelated initial conditions.

(A color version of this figure is available in the online journal.)

Figure 7. Contours of |B| for various times in a numerical solution with uncorrelated initial conditions.

(A color version of this figure is available in the online journal.)
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Figure 8. Contour plot of n with B vectors overlaid for a numerical solution
with initially uncorrelated initial conditions. The positive, circularly symmetric
density structures correspond to magnetic field structures, although the sense
(clockwise or counterclockwise) of the magnetic field structure does not
correlate with the sign of the density structures. Circled in black are symmetric
structures that display a high degree of spatial correlation. The circle gives an
approximate indication of the separatrix for the structure.

(A color version of this figure is available in the online journal.)

separate these circular structures from the background sheets
and turbulence is determined by the magnitudes—relative and
absolute—of the damping parameters. Larger damping values
erode the small-spatial-scale structures to a greater extent and, if
large enough, disrupt the structure persistence mechanism that,
for a fixed diameter, depends on a sufficiently large-amplitude
current filament to generate a sufficiently large radially sheared
magnetic field.

The preceding results were for a damping regime where
η/μ ∼ 1, an intermediate regime. Numerical solutions with
μ = 0 and η small explore the regime where η/μ → 0. In this
regime, which is opposite the regime used in Craddock et al.,
circularly symmetric current and magnetic structures are not
as prevalent; rather, sheet-like structures dominate the large-
amplitude fluctuations. Current and magnetic field gradients are
strongly damped, and the characteristic length scales in these
fields are larger.

Contours of density for a numerical solution with μ = 0
are shown in Figure 11. Visual comparison with contours for
runs with smaller damping parameters (Figure 6, where η = μ)
indicates a preponderance of sheets in the μ = 0 case, at the
expense of circularly symmetric structures as seen above. All
damping is in η; any current filament that would otherwise
form is unable to preserve its small-scale, large-amplitude
characteristics before being resistively damped. Inspection of
the current and |B| contours for the same numerical solution
(Figures 12 and 13) reveals broader profiles and relatively few
circular current and magnetic field structures with a well-defined
separatrix as in the small η case. Since there is no diffusive
damping, gradients in electron density are able to persist, and
electron density structures generally follow the same structures
in the current and magnetic fields.

Kurtosis excess measurements for the μ = 0 numerical so-
lutions yield mean values consistent with the η = μ numeri-

Figure 9. Kurtosis excess for a numerical solution with phase-correlated initial
conditions and η/μ = 1.

(A color version of this figure is available in the online journal.)

Figure 10. Kurtosis excess for a numerical solution with phase-uncorrelated
initial conditions and η/μ = 1.

(A color version of this figure is available in the online journal.)

cal solutions, as seen in Figure 14. Magnetic field strength and
electron density statistics are predominantly Gaussian, with cur-
rent statistics and density gradient statistics each non-Gaussian.
Perhaps not as remarkable in this case, the density gradient
kurtosis excess is again seen to be greater than the current kur-
tosis excess—this is anticipated since the dominant damping
of density gradients is turned off. With fewer filamentary cur-
rent structures, however, the mechanism proposed in Terry &
Smith (2007) is not likely to be at play in this case, since few
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Figure 11. Electron density contour visualization with diffusive damping parameter μ = 0 for various times.

(A color version of this figure is available in the online journal.)

Figure 12. Current density contour visualization with diffusive damping parameter μ = 0 for various times.

(A color version of this figure is available in the online journal.)

Figure 13. Magnitude of magnetic field contour visualization with diffusive damping parameter μ = 0 for various times.

(A color version of this figure is available in the online journal.)

large-amplitude filamentary current structures exist. Sheets, ev-
ident in the density gradients in Figure 15 and in the current
in Figure 12, are the dominant large-amplitude structures and
determine the extent to which the density gradients have non-
Gaussian statistics. The current and density sheets are well-
correlated spatially. The largest sheets can extend through the
entire domain, and evolve on a longer timescale than the tur-
bulence. Sheets exist at the interface between large-scale flux
tubes, and are regions of large magnetic shear, giving rise to
reconnection events. With η relatively large, the sheets evolve

on timescales shorter than the structure persistence timescale
associated with the long-lived flux tubes.

Sheets and filaments are the dominant large-amplitude,
long-timescale structures that arise in the KAW system.
Filaments arise and persist as long as η is small, with their ampli-
tude and statistical influence diminished as η increases. Sheets
exist in both regimes, becoming the sole large-scale structure
in the large η regime. Density gradients are consistently non-
Gaussian in both regimes as long as μ is small, although the
density structures are different in both regimes. Density gradient
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Figure 14. Kurtosis excess for a numerical solution with diffusive parameter
μ = 0. Density gradient kurtosis remains greater than current kurtosis for the
duration of the numerical solution.

(A color version of this figure is available in the online journal.)

sheets arise in the large η regime and these density gradient
sheets are large enough to yield non-Gaussian statistics.

5. ENSEMBLE STATISTICS AND PDFs

To explicitly analyze the extent to which the decaying KAW
system develops non-Gaussian statistics, ensemble runs were
performed for both the η/μ ∼ 1 and η/μ 
 1 regimes, and
PDFs of the fields were generated.

For the η/μ ∼ 1 regime, 10 numerical solutions were evolved
with identical parameters but for different randomization seeds.
In this case η = μ and both damping parameters have minimal
values to ensure numerical stability. The fields were initially
phase uncorrelated. The density gradient ensemble PDF for two
times in the solution results is shown in Figure 16. Density
gradients are Gaussian distributed initially. Many Alfvén times
into the numerical solution the statistics are non-Gaussian
with long tails. These PDFs are consistent with the time

histories of density gradient kurtosis excess as shown above. The
distribution tail extends beyond 15 standard deviations, almost
90 orders of magnitude above a Gaussian best-fit distribution.
Similar behavior is seen in the current PDFs—initially Gaussian
distributed tending to strongly non-Gaussian statistics with
long tails for later times. Figure 17 is the current PDF at an
advanced time into the numerical solution. It is to be noted that
the density gradient PDF has longer tails at higher amplitude
than does the current PDF. One would expect these to be in
rough agreement, since the underlying density and magnetic
fields have comparable PDFs that remain Gaussian distributed
throughout the numerical solution. The discrepancy between
the density gradient and current PDFs suggests a process that
enhances density derivatives above magnetic field derivatives.
Future work is required to explore causes of this enhancement.
This result is significant for pulsar scintillation, which is most
sensitive to density gradients. Although interstellar turbulence
is magnetic in nature, the KAW regime has the benefit of
fluctuation equipartition between n and B. The density gradient,
however, is more non-Gaussian than the magnetic component,
suggesting that this type of turbulence is specially endowed to
produce the type of scintillation scaling observed with pulsar
signals.

Ensemble runs for the η/μ 
 1 regime yield distributions
similar to the η/μ ∼ 1 regime in all fields. The ensemble PDF
for two times is shown in Figure 18. The initial density gradient
PDF is Gaussian distributed. For later times long tails are
evident and consistent with the kurtosis excess measurements
as presented above for the μ = 0 case. The density gradient
distribution has longer tails at higher amplitude than the current
distribution; the overall distributions are similar to those for the
η/μ ∼ 1 regime, despite the absence of filamentary structures
and the presence of sheets. The strongly non-Gaussian statistics
are insensitive to the damping regime, provided that the diffusion
coefficient is small enough to allow density gradients to persist.

6. DISCUSSION

Using the normalizations for Equations (3) and (4) and using
B = 1.4 μG, n = 0.08 cm−3, and Te = 1 eV, ηnorm, the
normalized Spitzer resistivity, is 2.4 × 10−7 and μnorm, the
normalized collisional diffusivity, is 1.9×10−7. For a resolution
of 5122, these damping values are unable to keep the system
numerically stable. The threshold for stability requires the
simulation η to be greater than 5×10−6, which is almost within
an order of magnitude of the ISM value. The numerical solutions

Figure 15. Electron density gradient (x direction) contour visualization with diffusive damping μ = 0 for various times.

(A color version of this figure is available in the online journal.)
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Figure 16. log-PDF of density gradients for an ensemble of numerical solutions with η/μ = 1 at t = 0 and t = 5000. The density gradient field at t = 0 is Gaussian
distributed, while for t = 5000 the gradients are enhanced in the tails, and deviate from a Gaussian. A best-fit Gaussian for each PDF is plotted for comparison.

(A color version of this figure is available in the online journal.)

Figure 17. log-PDF of current for an ensemble of numerical solutions with η/μ = 1 at t = 0 and t = 5000. The current at t = 0 is Gaussian distributed. For t = 5000
the current is non-Gaussian. Unlike the density gradient, the current is not enhanced in the tails of the PDF for later times relative to its initial Gaussian envelope.

(A color version of this figure is available in the online journal.)

presented here, while motivated by the pulsar signal width
scalings, more generally characterize the current and density

gradient PDFs when the damping parameters are varied. We
would expect the density gradients to be non-Gaussian when
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Figure 18. log-PDF of density gradient for an ensemble of numerical solutions with μ = 0 at t = 0 and t = 5000. The density gradient field at t = 0 is Gaussian
distributed, while for t = 5000 the gradients are enhanced in the tails, and deviate from a Gaussian. A best-fit Gaussian for each PDF is plotted for comparison.

(A color version of this figure is available in the online journal.)

using parameters that correspond to the ISM. Future work will
address the pulsar width scaling using electron density fields
from the numerical solution.

The non-Gaussian distributions presented here are strongly
tied to the fact that the system is decaying and that circular
intermittent structures are preserved from nonlinear interaction.
One can show that, in the KAW system, circularly symmetric
structures (or filaments) are force free in Equations (3) and (4),
i.e., the nonlinearity is zero. Once a large-amplitude structure
becomes sufficiently circularly symmetric and is able to preserve
itself from background turbulence via the shear mechanism, that
structure is expected to persist on long timescales relative to the
turbulence. Structure mergers will lead to a time-asymptotic
state with two oppositely signed current structures and no
turbulence. As structures merge, kurtosis excess increases until
the system reaches a final two-filament state, which would have
a strongly non-Gaussian distribution and large kurtosis excess.

If the system were driven, energy input at large scales would
replenish large-amplitude fluctuations. New structures would
arise from large-amplitude regions whenever the radial mag-
netic field shear were large enough to preserve the structure
from interaction with turbulence. One could define a structure-
replenishing rate from the driving terms that would depend
on the energy injection rate and scale of injection. The non-
Gaussian measures for a driven system would be characterized
by a competition between the creation of new structures through
the injection of energy at large scales and the annihilation of
structures by mergers or by erosion from continuously replen-
ished small-scale turbulence. If erosion effects dominate, the
kurtosis excess is maintained at Gaussian values, diminishing
the PDF tails relative to a Lévy distribution. If replenishing ef-
fects dominate, however, the enhancement of the tails of the
density gradient PDF may be observed in a driven system as it
is observed in the present decaying system. We note that struc-
ture function scaling in hydrodynamic turbulence is consistent

with the replenishing effects becoming more dominant relative
to erosion effects as scales become smaller, i.e., the turbulence is
more intermittent at smaller scales. The large range of scales in
interstellar turbulence and the conversion of MHD fluctuations
to kinetic Alfvén fluctuations at small scales both support the
notion that the structures of the decaying system are relevant
to interstellar turbulence at the scales of KAW excitations. This
scenario is consistent with arguments suggested by Harmon &
Coles (2005). They propose a turbulent cascade in the solar wind
that injects energy into the KAW regime, counteracting Landau
damping at scales near the ion Larmor radius. By doing so they
can account for enhanced small-scale density fluctuations and
observed scintillation effects in interplanetary scintillation.

We also observe that, although the numerical solutions
presented here are decaying in time, the decay rate decreases in
absolute value for later times (Figures 1 and 2), approximating
a steady-state configuration. The kurtosis excess (Figures 9
and 10) for the density gradient field is statistically stationary
after a brief startup period. Despite the decaying character of
the numerical solutions, they suggest that the density gradient
field would be non-Gaussian in the driven case.

The kurtosis excess—a measure of a field’s spatial inter-
mittency—is itself intermittent in time. The large spikes in
kurtosis excess correspond to rare events involving the merger
of two large-amplitude structures, usually filaments. A large-
amplitude short-lived sheet grows between the structures and
persists throughout the merger, gaining amplitude in time until
the point of merger. The kurtosis excess during this merger
event is dominated by the single large-amplitude sheet be-
tween the merging structures. This would likely be the region
of dominant scattering for scintillation, since a correspond-
ing large-amplitude density gradient structure exists in this re-
gion as well. The temporal intermittency of kurtosis excess
suggests that these mergers are rare and hence, of low prob-
ability. The heuristic picture of long undeviated Lévy flights
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punctuated by large angular deviations could apply to these
merger sheets.

7. CONCLUSIONS

Decaying KAW turbulence is shown to yield non-Gaussian
electron density gradients, consistent with non-Gaussian dis-
tributed density gradients inferred from pulsar width scaling
with distance to source. With small resistivity, large-amplitude
current filaments form spontaneously from Gaussian initial con-
ditions, and these filaments are spatially correlated with stable
electron density structures. The electron density field, while
Gaussian throughout the numerical solution, has gradients that
are strongly non-Gaussian. Ensemble statistics for current and
density gradient fields confirm the kurtosis measurements for
individual runs. Density gradient statistics, when compared to
current statistics, have more enhanced tails, even though both
these fields are a single derivative away from electron density
and magnetic field, respectively, which are in equipartition and
Gaussian distributed throughout the numerical solution.

When all damping is placed in resistive diffusion (η/μ → 0
regime), filamentary structures give way to sheet-like structures
in current, magnetic, electron density, and density gradient
fields. Kurtosis measurements remain similar to those for the
small η case, and the field PDFs also remain largely unchanged,
despite the different large-amplitude structures at play.

The kind of structures that emerge, whether filaments or
sheets, is a function of the damping parameters. With η and
μ minimal to preserve numerical stability and of comparable
value, the decaying KAW system tends to form filamentary
current structures with associated larger-scale magnetic and
density structures, all generally circularly symmetric and long-
lived. Each filament is associated with a flux tube and can be
well separated from the surrounding turbulence. Sheets exist
in this regime as well, and they are localized to the interface
between flux tubes. With η small and μ = 0, the system is in
a sheet-dominated regime. Both regimes have density gradients
that are non-Gaussian with large kurtosis.

The effects on pulsar signal scintillation in each regime have
yet to be ascertained directly. The conventional picture of a Lévy
flight is a random walk with step sizes distributed according to
a long-tailed distribution with no defined variance. This gives
rise to long, uninterrupted flights punctuated by large scattering
events. This is in contrast to a normally distributed random walk
with relatively uniform step sizes and small scattering events.
The intermittent filaments that arise in the small η and μ regime
are suggestive of structures that could scatter pulsar signals
through large angles; however the associated density structures
are broadened in comparison to the current filament and would
not give rise to as large a scattering event. Even broadened
structures can yield Lévy distributed density gradients (Terry &
Smith 2007), but it is not clear how the Lévy flight picture can be
applied to these broad density gradient structures. In the μ = 0

regime, the large-aspect-ratio sheets may serve to provide the
necessary scatterings through refraction and may map well onto
the Lévy flight model.

An alternative possibility, suggested by the temporal inter-
mittency of the kurtosis (itself a measure of a field’s spatial
intermittency), is the encounter between the pulsar signal and a
short-lived sheet that arises during the merger of two filamentary
structures. These sheets are limited in extent and have very large
amplitudes. At their greatest magnitude they are the dominant
structure in the numerical solution. Their temporal intermittency
distinguishes them from the long-lived sheets surrounding them.
It is possible that a pulsar signal would undergo large scattering
when interacting with a merger sheet. This scattering would be
a rare event, suggestive of a scenario that would give rise to a
Lévy flight.

We thank S. Boldyrev, S. Spangler, and E. Zweibel for helpful
discussions and comments.
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